Journal homepage: http://einspem.upm.edu.my/journal

On a New Subclass of Harmonic Univalent Functions

Bayram, H. * and Yalçin, S. ${ }^{1}$
${ }^{1}$ Department of Mathematics, Faculty of Arts and Science,, Bursa Uludağ University, Bursa, Turkey

E-mail: hbayram@uludag.edu.tr

* Corresponding author

Received: 26 February 2018
Accepted: 4 December 2019

ABSTRACT

In the acquaint article, we scrutinize some fundamental attribute of a subclass of harmonic univalent functions defined by a new alteration. Like these, coefficient disparities, distortion bounds, convolutions, convex combinations and extreme points.

Keywords: Harmonic, univalent, a new linear operator, multiplier transformation, distortion bounds.

1. Introduction

Let $\mathbb{D}=\{\mathrm{z}:|\mathrm{z}|<1\}$ indicates the open unit disk and let \mathcal{H} denotes the family of continuous complex valued harmonic functions in \mathbb{D}. Let \mathcal{A} denotes the class of functions which are analytic in \mathbb{D}. It is clear that \mathcal{A} is a subclass of \mathcal{H}. If \mathfrak{f} and \mathfrak{g} are selected from \mathcal{A}, harmonic \mathfrak{f} function in \mathbb{D} can be expressed as $\mathfrak{f}=\mathfrak{h}+\overline{\mathfrak{g}}$. It is usually called the analytic part of \mathfrak{f} for the \mathfrak{h} function and the co-analytic part for the \mathfrak{g} function. We know that \mathcal{S} denotes the class of normalized analytic univalent functions in \mathbb{D}. Attention that if the co-analytic part's members are zero, then \mathcal{H} degrades to the class of \mathcal{S}. A sufficient and necessary condition for \mathfrak{f} to be sense-preserving and locally univalent in \mathbb{D} is that $\left|\mathfrak{h}^{\prime}(\mathrm{z})\right|>\left|\mathfrak{g}^{\prime}(\mathrm{z})\right|$ (see Clunie and Sheil-Small (1984)). $\mathcal{S H}$ denotes the class of functions $\mathfrak{f}=\mathfrak{h}+\overline{\mathfrak{g}}$ which are harmonic univalent and sense-preserving in the unit disk \mathbb{D} for which $\mathfrak{f}(0)=\mathfrak{f}_{\mathrm{z}}(0)-1=0$. Also, attention that if the co-analytic part of \mathfrak{f} function is zero, then $\mathcal{S H}$ reduces to \mathcal{S}. Then we can state \mathfrak{h} and \mathfrak{g} analytic functions as for $\mathfrak{f}=\mathfrak{h}+\overline{\mathfrak{g}}$ as follows

$$
\begin{equation*}
\mathfrak{h}(\mathrm{z})=\mathbf{z}+\sum_{j=2}^{\infty} a_{j} \mathbf{z}^{j} \quad \text { and } \quad \mathfrak{g}(\mathrm{z})=\sum_{j=1}^{\infty} b_{j} \mathbf{z}^{j} . \tag{1}
\end{equation*}
$$

One demonstrates clearly that the sense-preserving feature alludes to $\left|b_{1}\right|<1$. The subclass $\mathcal{S H}^{0}$ of $\mathcal{S H}$ contains entire functions in $\mathcal{S H}$ which have the extra feature $f_{\overline{\mathbf{z}}}(0)=0$.

Geometric functions theory has been studied a lot in recent years (For example; Olatunji and Dutta (2019), Kumar and Ravichandran (2017)).

Clunie and Sheil-Small (1984) researched $\mathcal{S H}$ class's geometric subclasses as well as some coefficient bounds. Since then, there have been many articles about $\mathcal{S H}$ and related subclasses.

For $\mathfrak{f} \in \mathcal{S}$, the differential operator $D^{n}\left(n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right)$ of \mathfrak{f} was acquainted by Salagean (1983). This operator was developed and modified by many researchers over time. As a simple example for $\mathfrak{f}=\mathfrak{h}+\overline{\mathfrak{g}}$ given by (1), Jahangiri et al. (2002) defined the modified Salagean operator of \mathfrak{f} as

$$
D^{n} \mathfrak{f}(\mathrm{z})=D^{n} \mathfrak{h}(\mathrm{z})+(-1)^{n} \overline{D^{n} \mathfrak{g}(\mathrm{z})}
$$

where

$$
D^{n} \mathfrak{h}(\mathrm{z})=\mathbf{z}+\sum_{j=2}^{\infty} j^{n} a_{j} \mathbf{z}^{j} \quad \text { and } \quad D^{n} \mathfrak{g}(\mathrm{z})=\sum_{j=1}^{\infty} j^{n} b_{j} \mathbf{z}^{j}
$$

Now, for $\mathfrak{f} \in \mathcal{A}$ functions, let $\mathfrak{f}=\mathfrak{h}+\overline{\mathfrak{g}}$ like (1), we define the modified multiplier
transformation of \mathfrak{f}

$$
\begin{gather*}
I_{\vartheta}^{0, \zeta}(\varrho, \xi) \mathfrak{f}(\mathbf{z})=\mathfrak{f}(\mathbf{z}) \\
I_{\vartheta}^{1, \zeta}(\varrho, \xi) \mathfrak{f}(\mathrm{z})=\frac{\zeta-\xi+\varrho-\vartheta}{\zeta+\varrho} \mathfrak{f}(\mathrm{z})+\frac{\xi+\vartheta}{\zeta+\varrho}\left(\mathrm{zf}_{\mathbf{z}}(\mathrm{z})-\overline{\mathrm{z}} \mathfrak{f}_{\mathrm{z}}(\mathrm{z})\right) \tag{2}\\
I_{\vartheta}^{n, \zeta}(\varrho, \xi) \mathfrak{f}(\mathrm{z})=I_{\vartheta}^{1, \zeta}(\varrho, \xi)\left(I_{\vartheta}^{n-1, \zeta}(\varrho, \xi) \mathfrak{f}(\mathrm{z})\right) \cdot\left(n \in \mathbb{N}_{0}\right) \tag{3}
\end{gather*}
$$

Where $\zeta, \xi, \vartheta, \varrho>0$. If \mathfrak{f} is given by (17), then from (2) and (3) we see that

$$
\begin{align*}
I_{\vartheta}^{n, \zeta}(\varrho, \xi) \mathfrak{f}(\mathrm{z}) & =\mathrm{z}+\sum_{j=2}^{\infty}\left[\frac{\zeta+(\xi+\vartheta)(j-1)+\varrho}{\zeta+\varrho}\right]^{n} a_{j} \mathrm{z}^{j} \\
& +(-1)^{n} \sum_{j=1}^{\infty}\left[\frac{-\zeta+(\xi+\vartheta)(j+1)-\varrho}{\zeta+\varrho}\right]^{n} \overline{b_{j} \mathrm{z}^{j}} \tag{4}
\end{align*}
$$

Let \mathfrak{f} is given by (1). Thus we obtain that

$$
\begin{align*}
I_{\vartheta}^{n, \zeta}(\varrho, \xi) \mathfrak{f}(\mathrm{z}) & :=\mathfrak{f}(\mathrm{z}) * \underbrace{\phi_{\varrho, \vartheta}^{\xi, \zeta}(\mathrm{z}) * \ldots * \phi_{\varrho, \vartheta}^{\xi, \zeta}(\mathrm{z})}_{n \text { times }} \\
& =\mathfrak{h} * \underbrace{\phi_{1, \varrho, \vartheta}^{\xi, \zeta}(\mathrm{z}) * \ldots * \phi_{1, \varrho, \vartheta}^{\xi, \zeta}(\mathrm{z})}_{n \text { times }}+\overline{\mathfrak{g} * \underbrace{\phi_{2, \varrho, \vartheta}^{\xi, \zeta} * \ldots * \phi_{2, \varrho, \vartheta}^{\xi, \zeta}}_{n \text { times }},}, \tag{5}
\end{align*}
$$

where " $*$ " shows convolution of power series or the usual Hadamard product and

$$
\begin{aligned}
\phi_{\varrho, \vartheta}^{\xi, \zeta}(z) & =\frac{z-\left(\frac{\zeta-\xi+\varrho-\vartheta}{\zeta+\varrho}\right) z^{2}}{(1-\mathrm{z})^{2}}+\frac{\left[1-\frac{2(\xi+\vartheta)}{\zeta+\varrho}\right] \bar{z}-\left[1-\frac{\xi+\vartheta}{\zeta+\varrho}\right] \bar{z}^{2}}{(1-\overline{\mathrm{z}})^{2}} \\
& =\phi_{1, \varrho, \vartheta}^{\xi, \zeta}(\mathrm{z})+\overline{\phi_{2, \varrho, \vartheta}^{\xi, \zeta}(\mathrm{z})}
\end{aligned}
$$

If special numbers are selected for the parameters $n, \zeta, \vartheta, \varrho$ and ξ The following operators, which are examined by various authors, are obtained:
for $\mathfrak{f} \in \mathcal{A}$,
(i) $I_{1}^{n, 1}(0,0) \mathfrak{f}(z)=D^{n} \mathfrak{f}(z)($ Salagean 1983 $)$,
(ii) $I_{\vartheta}^{n, 1}(\lambda, 0) \mathfrak{f}(\mathrm{z})=I_{\vartheta}^{n} \mathfrak{f}(\mathrm{z})($ Cho and Srivastava (2003), Cho and Kim 2003), Flett (1972),
(iii) $I_{1}^{n, 1}(1,0) \mathfrak{f}(\mathrm{z})=I^{n} \mathfrak{f}(\mathrm{z})$ (Uralegaddi and Somanatha (1992)),
(iv) $I_{\vartheta}^{n, 1}(0,0) \mathfrak{f}(\mathrm{z})=D_{\vartheta}^{n} \mathfrak{f}(\mathrm{z})$ Al-Oboudi (2004),
(v) $I_{\vartheta}^{n, 1}(l, 0) \mathfrak{f}(\mathrm{z})=D^{n}(\vartheta, l) \mathfrak{f}(\mathrm{z}) ; l>0$ Catas (2009) $)$
for $\mathfrak{f} \in \mathcal{H}$,
(iv) $I_{1}^{n, 1}(0,0) \mathfrak{f}(\mathrm{z})=D^{n} \mathfrak{f}(\mathrm{z})$ (Jahangiri et al. (2002),
(v) $I_{1}^{n, 1}(\gamma, 0) \mathfrak{f}(\mathrm{z})=I_{\gamma}^{n} \mathfrak{f}(\mathrm{z}) ; \gamma>0$ (Yasar and Yalcin (2012)),
(vi) $I_{\vartheta}^{n, 1}(0,0) \mathfrak{f}(\mathrm{z})=D_{\vartheta}^{n} \mathfrak{f}(\mathrm{z})$ (Yasar and Yalcin (2013) $)$,
(vii) $I_{\varrho}^{n, \gamma}(\varrho, 0) \mathfrak{f}(\mathrm{z})=I_{\gamma, \varrho}^{n} \mathfrak{f}(\mathrm{z})$ Bayram and Yalcin (2017)).
$\mathcal{S H}(\zeta, \vartheta, \varrho, \xi, n, \delta)$ represents the subclass of $\mathcal{S H}$ comprising of functions \mathfrak{f} in type (1) which provide below the circumstance

$$
\begin{equation*}
\operatorname{Re}\left(\frac{I_{\vartheta}^{n+1, \zeta}(\varrho, \xi) \mathfrak{f}(\mathrm{z})}{I_{\vartheta}^{n, \zeta}(\varrho, \xi) \mathfrak{f}(\mathrm{z})}\right) \geq \delta, \quad 0 \leq \delta<1 \tag{6}
\end{equation*}
$$

where $I_{\vartheta}^{n, \zeta_{\mathcal{F}}} \mathrm{f}(\mathrm{z})$ is described by (4).
We allow to the subclass $\overline{\mathcal{S} \mathcal{H}}(\zeta, \vartheta, \varrho, \xi, n, \delta)$ occurring of harmonic functions $\mathfrak{f}_{n}=\mathfrak{h}+\overline{\mathfrak{g}}_{n}$ in $\mathcal{S H}$, therefore, \mathfrak{h} and \mathfrak{g}_{n} are in type

$$
\begin{equation*}
\mathfrak{h}(\mathbf{z})=\mathbf{z}-\sum_{j=2}^{\infty} a_{j} \mathbf{z}^{j}, \mathfrak{g}_{n}(\mathbf{z})=(-1)^{n} \sum_{j=1}^{\infty} b_{j} \mathbf{z}^{j}, \quad a_{j}, \quad b_{j} \geq 0 . \tag{7}
\end{equation*}
$$

If the parameters are chosen appropriately, $\mathcal{S H}(\zeta, \vartheta, \varrho, \xi, n, \delta)$ classes are reduced to different subclasses of harmonic univalent functions. Like,
(i) $\mathcal{S H}(1,1,0,0,0,0)=\mathcal{S H}^{*}(0)$ (Avci and Zlotkiewicz (1990), Silverman (1998), Silverman and Silvia (1999)),
(ii) $\mathcal{S H}(1,1,0,0,0, \delta)=\mathcal{S H}^{*}(\delta)($ Jahangiri (1999) $)$,
(iii) $\mathcal{S H}(1,1,0,0,1,0)=\mathcal{K} \mathcal{H}(0)$ Avci and Zlotkiewicz (1990), Silverman (1998), Silverman and Silvia (1999)),
(iv) $\mathcal{S H}(1,1,0,0,1, \delta)=\mathcal{K} \mathcal{H}(\delta)(\overline{\text { Jahangiri }}(\sqrt{1999)})$,
(v) $\mathcal{S H}(1,1,0,0, n, \delta)=\mathcal{H}(n, \delta)$ (Jahangiri et al. (2002)),
(vi) $\mathcal{S H}(1,1, \varrho, 0, n, \delta)=\mathcal{S H}(\gamma, n, \delta)$ (Yasar and Yalcin (2012)),
(vii) $\mathcal{S H}(1, \vartheta, 0,0, n, \delta)=\mathcal{S H}(\vartheta, n, \delta)$ (Yasar and Yalcin (2013)),
(viii) $\mathcal{S H}(\gamma, \varrho, \varrho, 0, n, \delta)=\mathcal{S H}(\gamma, \varrho, n, \delta)$ (Bayram and Yalcin (2017)),

Define $\mathcal{S H}^{0}(\zeta, \vartheta, \varrho, \xi, n, \delta):=\mathcal{S H}(\zeta, \vartheta, \varrho, \xi, n, \delta) \cap \mathcal{S H}{ }^{0}$ and

$$
\overline{\mathcal{S H}}^{0}(\zeta, \vartheta, \varrho, \xi, n, \delta):=\overline{\mathcal{S H}}(\zeta, \vartheta, \varrho, \xi, n, \delta) \cap S H^{0} .
$$

2. Primary Conclusions

Theorem 2.1. Let $\mathfrak{f}=\mathfrak{h}+\overline{\mathfrak{g}}$. Let \mathfrak{h} and \mathfrak{g} are given by (1) with $b_{1}=0$. Let

$$
\begin{gather*}
\sum_{j=2}^{\infty}\left[\frac{\zeta+(\xi+\vartheta)(j-1)+\varrho}{\zeta+\varrho}\right]^{n}\left[\frac{\zeta+(\xi+\vartheta)(j-1)+\varrho}{\zeta+\varrho}-\delta\right]\left|a_{j}\right|+ \\
\sum_{j=2}^{\infty}\left[\frac{-\zeta+(\xi+\vartheta)(j+1)-\varrho}{\zeta+\varrho}\right]^{n}\left[\frac{-\zeta+(\xi+\vartheta)(j+1)-\varrho}{\zeta+\varrho}+\delta\right]\left|b_{j}\right| \leq 1-\delta, \tag{8}
\end{gather*}
$$

where $\xi+\vartheta \geq 2(\zeta+\varrho), n \in \mathbb{N}_{0}, 0 \leq \delta<1$. In that case \mathfrak{f} is harmonic univalent, sense-preserving in \mathbb{D} and $\mathfrak{f} \in \mathcal{S H}^{0}(\zeta, \vartheta, \varrho, \xi, n, \delta)$.

As a special notation for convenience, we make

$$
L_{n}=\left[\frac{\zeta+(\xi+\vartheta)(j-1)+\varrho}{\zeta+\varrho}\right]^{n}
$$

and

$$
M_{n}=\left[\frac{-\zeta+(\xi+\vartheta)(j+1)-\varrho}{\zeta+\varrho}\right]^{n}
$$

in this article.

Proof. If $\mathrm{z}_{1} \neq \mathrm{z}_{2}$,

$$
\begin{aligned}
\left|\frac{\mathfrak{f}\left(\mathbf{z}_{1}\right)-\mathfrak{f}\left(\mathbf{z}_{2}\right)}{\mathfrak{h}\left(\mathrm{z}_{1}\right)-\mathfrak{h}\left(\mathrm{z}_{2}\right)}\right| & \geq 1-\left|\frac{\mathfrak{g}\left(\mathrm{z}_{1}\right)-\mathfrak{g}\left(\mathrm{z}_{2}\right)}{\mathfrak{h}\left(\mathrm{z}_{1}\right)-\mathfrak{h}\left(\mathrm{z}_{2}\right)}\right|=1-\left|\frac{\sum_{j=2}^{\infty} b_{j}\left(\mathrm{z}_{1}^{j}-\mathrm{z}_{2}^{j}\right)}{\left(\mathrm{z}_{1}-\mathrm{z}_{2}\right)+\sum_{j=2}^{\infty} a_{j}\left(\mathrm{z}_{1}^{j}-\mathrm{z}_{2}^{j}\right)}\right| \\
& >1-\frac{\sum_{j=2}^{\infty} j\left|b_{j}\right|}{1-\sum_{j=2}^{\infty} j\left|a_{j}\right|} \\
& \geq 1-\frac{\sum_{j=2}^{\infty} \frac{M_{n}\left[\frac{-\zeta+(\xi+\vartheta)(j+1)-\varrho}{\varsigma+\rho}\right]}{1-\sum_{j=2}^{\infty} \frac{L_{n}\left[\frac{\zeta+(\xi+\vartheta)(j-1)+\varrho}{\zeta+e}\right]}{1-\delta}\left|b_{j}\right|}\left|a_{j}\right|}{2} \geq 0
\end{aligned}
$$

that demonstrates univalence. The attention that \mathfrak{f} is sense-preserving in \mathbb{D}. Therefore

$$
\begin{aligned}
\left|\mathfrak{h}^{\prime}(\mathrm{z})\right| & \geq 1-\sum_{j=2}^{\infty} j\left|a_{j}\right||\mathrm{z}|^{j-1} \\
& >1-\sum_{j=2}^{\infty} \frac{L_{n}\left[\frac{\zeta+(\xi+\vartheta)(j-1)+\varrho}{\zeta+\varrho}-\delta\right]}{1-\delta}\left|a_{j}\right| \\
& \geq \sum_{j=2}^{\infty} \frac{M_{n}\left[\frac{-\zeta+(\xi+\vartheta)(j+1)-\varrho}{\zeta+\varrho}+\delta\right]}{1-\delta}\left|b_{j}\right| \\
& >\sum_{j=2}^{\infty} j\left|b_{j}\right||z|^{j-1} \\
& \geq\left|\mathfrak{g}^{\prime}(\mathrm{z})\right| .
\end{aligned}
$$

If we use the consubstantiality that $\operatorname{Re} \omega \geq \delta \Leftrightarrow|1-\delta+\omega| \geq|1+\delta-\omega|$, it suffices to prove that

$$
\begin{equation*}
\left|(1-\delta) I_{\vartheta}^{n, \zeta_{\zeta}} \mathfrak{f}(\mathrm{z})+I_{\vartheta}^{n+1, \zeta_{\mathfrak{f}}} \mathfrak{f}(\mathrm{z})\right|-\left|(1+\delta) I_{\vartheta}^{n, \zeta_{\mathcal{F}}} \mathfrak{f}(\mathrm{z})-I_{\vartheta}^{n+1, \zeta^{f}} \mathfrak{f}(\mathrm{z})\right| \geq 0 . \tag{9}
\end{equation*}
$$

Substituting for $I_{\vartheta}^{n, \zeta} \mathfrak{f}(\mathrm{z})$ and $I_{\vartheta}^{n+1, \zeta} \mathfrak{f}(\mathrm{z})$ in (9), we have

$$
\begin{aligned}
&\left.\left|(1-\delta) I_{\vartheta}^{n, \zeta} \mathfrak{f}(\mathbf{z})+I_{\vartheta}^{n+1, \zeta} \mathfrak{f}(\mathbf{z})\right|-\mid(1+\delta) I_{\vartheta}^{n, \zeta} \mathfrak{f}(\mathrm{z})-I_{\vartheta}^{n+1, \zeta^{\prime}} \mathfrak{f} \mathbf{z}\right) \mid \\
& \geq 2(1-\delta)|\mathbf{z}|-\sum_{j=2}^{\infty} L_{n}\left[\frac{\zeta+(\xi+\vartheta)(j-1)+\varrho}{\zeta+\varrho}+1-\delta\right]\left|a_{j}\right||\mathbf{z}|^{j} \\
&-\sum_{j=2}^{\infty} M_{n}\left[\frac{-\zeta+(\xi+\vartheta)(j+1)-\varrho}{\zeta+\varrho}-1+\delta\right]\left|b_{j}\right||\mathbf{z}|^{j} \\
&-\sum_{j=2}^{\infty} L_{n}\left[\frac{\zeta+(\xi+\vartheta)(j-1)+\varrho}{\zeta+\varrho}-1-\delta\right]\left|a_{j}\right||\mathrm{z}|^{j} \\
&-\sum_{j=2}^{\infty} M_{n}\left[\frac{-\zeta+(\xi+\vartheta)(j+1)-\varrho}{\zeta+\varrho}+1+\delta\right]\left|b_{j}\right||z|^{j} \\
&> 2(1-\delta)|\mathbf{z}|\left\{1-\sum_{j=2}^{\infty} L_{n}\left[\frac{\zeta+(\xi+\vartheta)(j-1)+\varrho}{\zeta+\varrho}-\delta\right]\left|a_{j}\right|\right. \\
&\left.\quad-\sum_{j=2}^{\infty} M_{n}\left[\frac{-\zeta+(\xi+\vartheta)(j+1)-\varrho}{\zeta+\varrho}+\delta\right]\left|b_{j}\right|\right\} .
\end{aligned}
$$

Then the last statement is not negative by (8).
Theorem 2.2. Let $\mathfrak{f}_{n}=\mathfrak{h}+\overline{\mathfrak{g}}_{n}$ be given by (7) with $b_{1}=0$. Then $\mathfrak{f}_{n} \in$ $\overline{\mathcal{S H}}^{0}(\zeta, \vartheta, \varrho, \xi, n, \delta)$ if and only if

$$
\begin{gather*}
\sum_{j=2}^{\infty} L_{n}\left[\frac{\zeta+(\xi+\vartheta)(j-1)+\varrho}{\zeta+\varrho}-\delta\right] a_{j}+\sum_{j=2}^{\infty} M_{n}\left[\frac{-\zeta+(\xi+\vartheta)(j+1)-\varrho}{\zeta+\varrho}+\delta\right] b_{j} \\
\leq 1-\delta \tag{10}
\end{gather*}
$$

where $\xi+\vartheta \geq 2(\zeta+\varrho), n \in \mathbb{N}_{0}, 0 \leq \delta<1$.

Proof. The "if" part of the proof is obtained by Theorem $1 \overline{\mathcal{S H}}^{0}(\zeta, \vartheta, \varrho, \xi, n, \delta) \subset$ $\mathcal{S H}{ }^{0}(\zeta, \vartheta, \varrho, \xi, n, \delta)$. To show the "only if" part, we need to show $\mathfrak{f}_{n} \notin \overline{\mathcal{S H}}^{0}(\zeta, \vartheta, \varrho, \xi, n, \delta)$ if the stipulation (10) doesn't hold. Attention that a sufficient and necessary condition for $\mathfrak{f}_{n}=\mathfrak{h}+\overline{\mathfrak{g}}_{n}$ given by (7), to be in $\overline{\mathcal{S H}}^{0}(\zeta, \vartheta, \varrho, \xi, n, \delta)$ is that (6) to be satisfied. This is same with
$\operatorname{Re}\left\{\frac{(1-\delta) \mathbf{z}-\sum_{j=2}^{\infty} L_{n}\left[\frac{\zeta+(\xi+\vartheta)(j-1)+\varrho}{\zeta+\varrho}-\delta\right] a_{j} \mathbf{z}^{j}-\sum_{j=2}^{\infty} M_{n}\left[\frac{-\zeta+(\xi+\vartheta)(j+1)-\varrho}{\zeta+\varrho}+\delta\right] b_{j} \overline{\mathbf{z}}^{j}}{\mathbf{z}-\sum_{j=2}^{\infty} L_{n} a_{j} \mathbf{z}^{j}+\sum_{j=2}^{\infty} M_{n} b_{j} \overline{\mathbf{z}}^{j}}\right\} \geq 0$.
The above stipulation must hold for all values of $|\mathrm{z}|=r<1$. With selecting these values of \mathbf{z} on the positive real axis where $0 \leq \mathrm{z}=r<1$. We ought to have

$$
\begin{equation*}
\frac{1-\delta-\sum_{j=2}^{\infty}\left(L_{n}\left[\frac{\zeta+(\xi+\vartheta)(j-1)+\varrho}{\zeta+\varrho}-\delta\right] a_{j}-M_{n}\left[\frac{-\zeta+(\xi+\vartheta)(j+1)-\varrho}{\zeta+\varrho}+\delta\right] b_{j}\right) r^{j-1}}{1-\sum_{j=2}^{\infty} L_{n} a_{j} r^{j-1}+\sum_{j=2}^{\infty} M_{n} b_{j} r^{j-1}} \geq 0 \tag{11}
\end{equation*}
$$

If the stipulation (10) is not valid, then the expression in (11) is negative for r values approaching to 1 . Therefore there exist $\mathrm{z}_{0}=r_{0}$ in $(0,1)$ for which the quotient in (11) is negative.
This shows the required stipulation for $f_{n} \in \overline{\mathcal{S H}}^{0}(\zeta, \vartheta, \varrho, \xi, n, \delta)$.
Theorem 2.3. Let \mathfrak{f}_{n} be given by (7). For the \mathfrak{f}_{n} functions to be in the $\overline{\mathcal{S H}}^{0}(\zeta, \vartheta, \varrho, \xi, n, \delta)$ class, a necessary and sufficient condition is

$$
\mathfrak{f}_{n}(\mathrm{z})=\sum_{j=1}^{\infty}\left(X_{j} \mathfrak{h}_{j}(\mathrm{z})+Y_{j} \mathfrak{g}_{n_{j}}(\mathrm{z})\right)
$$

where

$$
\mathfrak{h}_{1}(\mathrm{z})=\mathrm{z}, \quad \mathfrak{h}_{j}(\mathrm{z})=\mathrm{z}-\frac{1-\delta}{L_{n}\left[\frac{\zeta+(\xi+\vartheta)(j-1)+\varrho}{\zeta+\varrho}-\delta\right]} \mathrm{z}^{j} \quad(j=2,3, \ldots),
$$

and for $j=2,3, \ldots$

$$
\begin{gathered}
\mathfrak{g}_{n_{1}}(\mathrm{z})=\mathrm{z}, \quad \mathfrak{g}_{n_{j}}(\mathrm{z})=\mathrm{z}+(-1)^{n} \frac{1-\delta}{M_{n}\left[\frac{-\zeta+(\xi+\vartheta)(j+1)-\varrho}{\zeta+\varrho}+\delta\right]^{2}} \overline{\mathrm{z}}^{j} \\
X_{j} \geq 0, Y_{j} \geq 0, \sum_{j=1}^{\infty}\left(X_{j}+Y_{j}\right)=1, \quad \xi+\vartheta \geq 2(\zeta+\varrho), n \in \mathbb{N}_{0}, 0 \leq \delta<1 .
\end{gathered}
$$

Especially, the extreme points of $\overline{\mathcal{S H}}^{0}(\zeta, \vartheta, \varrho, \xi, n, \delta)$ are $\left\{\mathfrak{h}_{j}\right\}$ and $\left\{\mathfrak{g}_{n_{j}}\right\}$.

Proof. For \mathfrak{f}_{n} functions in type (7) we have

$$
\begin{aligned}
\mathfrak{f}_{n}(\mathrm{z})= & \sum_{j=1}^{\infty}\left(X_{j} \mathfrak{h}_{j}(\mathrm{z})+Y_{j} \mathfrak{g}_{n_{j}}(\mathrm{z})\right) \\
= & \sum_{j=1}^{\infty}\left(X_{j}+Y_{j}\right) \mathrm{z}-\sum_{j=2}^{\infty} \frac{1-\delta}{L_{n}\left[\frac{\zeta+(\xi+\vartheta)(j-1)+\varrho}{\zeta+\varrho}-\delta\right]} X_{j} \mathrm{z}^{j} \\
& +(-1)^{n} \sum_{j=2}^{\infty} \frac{1-\delta}{M_{n}\left[\frac{-\zeta+(\xi+\vartheta)(j+1)-\varrho}{\zeta+\varrho}+\delta\right]} Y_{j} \bar{z}^{j} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \sum_{j=2}^{\infty} \frac{L_{n}\left[\frac{\zeta+(\xi+\vartheta)(j-1)+\varrho}{\zeta+\varrho}-\delta\right]}{1-\delta}\left(\frac{1-\alpha}{L_{n}\left[\frac{\zeta+(\xi+\vartheta)(j-1)+\varrho}{\zeta+\varrho}-\delta\right]} X_{j}\right) \\
& +\sum_{j=2}^{\infty} \frac{M_{n}\left[\frac{-\zeta+(\xi+\vartheta)(j+1)-\varrho}{\zeta+\varrho}+\delta\right]}{1-\delta}\left(\frac{1-\delta}{M_{n}\left[\frac{-\zeta+(\xi+\vartheta)(j+1)-\varrho}{\zeta+\varrho}+\delta\right]} Y_{j}\right) \\
= & \sum_{j=2}^{\infty} X_{j}+\sum_{j=2}^{\infty} Y_{j}=1-X_{1}-Y_{1} \leq 1
\end{aligned}
$$

and so $\mathfrak{f}_{n} \in \overline{\mathcal{S H}}^{0}(\zeta, \vartheta, \varrho, \xi, n, \delta)$. Conversely, if $\mathfrak{f}_{n} \in \overline{\mathcal{S H}}^{0}(\zeta, \vartheta, \varrho, \xi, n, \delta)$, then

$$
a_{j} \leq \frac{1-\delta}{L_{n}\left[\frac{\zeta+(\xi+\vartheta)(j-1)+\varrho}{\zeta+\varrho}-\delta\right]}
$$

and

$$
b_{j} \leq \frac{1-\delta}{M_{n}\left[\frac{-\zeta+(\xi+\vartheta)(j+1)-\varrho}{\zeta+\varrho}+\delta\right]}
$$

Set

$$
\begin{aligned}
X_{j} & =\frac{L_{n}\left[\frac{\zeta+(\xi+\vartheta)(j-1)+\varrho}{\zeta+\varrho}-\delta\right]}{1-\delta} a_{j},(j=2,3, \ldots) \\
Y_{j} & =\frac{M_{n}\left[\frac{-\zeta+(\xi+\vartheta)(j+1)-\varrho}{\zeta+\varrho}+\delta\right]}{1-\delta} b_{j},(j=2,3, \ldots)
\end{aligned}
$$

and

$$
X_{1}+Y_{1}=1-\left(\sum_{j=2}^{\infty} X_{j}+Y_{j}\right)
$$

where $X_{j}, Y_{j} \geq 0$. If so, as necessary, we have

$$
\mathfrak{f}_{n}(\mathbf{z})=\left(X_{1}+Y_{1}\right) \mathbf{z}+\sum_{j=2}^{\infty} X_{j} \mathfrak{h}_{j}(\mathbf{z})+\sum_{j=2}^{\infty} Y_{j} \mathfrak{g}_{n_{j}}(\mathbf{z})=\sum_{j=1}^{\infty}\left(X_{j} \mathfrak{h}_{j}(\mathbf{z})+Y_{j} \mathfrak{g}_{n_{j}}(\mathbf{z})\right) .
$$

Theorem 2.4. Let $\mathfrak{f}_{n} \in \overline{\mathcal{S H}}^{0}(\zeta, \vartheta, \varrho, \xi, n, \delta)$. Then for $|\mathbf{z}|=r<1$ and $\xi+\vartheta \geq$ $2(\zeta+\varrho), n \in \mathbb{N}_{0}, 0 \leq \delta<1$. we have

$$
\left|\mathfrak{f}_{n}(\mathrm{z})\right| \leq r+\frac{1-\delta}{\left[\frac{\zeta+\xi+\varrho+\vartheta}{\zeta+\varrho}\right]^{n}\left[\frac{\zeta+\xi+\varrho+\vartheta}{\zeta+\varrho}-\delta\right]} r^{2}
$$

and

$$
\left|\mathfrak{f}_{n}(\mathrm{z})\right| \geq r-\frac{1-\delta}{\left[\frac{\zeta+\xi+\varrho+\vartheta}{\zeta+\varrho}\right]^{n}\left[\frac{\zeta+\xi+\varrho+\vartheta}{\zeta+\varrho}-\delta\right]} r^{2} .
$$

Proof. Here we only will prove the rightside of the inequality. The leftside of the inequality might be shown like this way. Let $\mathfrak{f}_{n} \in \overline{\mathcal{S H}}^{0}(\zeta, \vartheta, \varrho, \xi, n, \delta)$. If we take absolute value of \mathfrak{f}_{n}, then we obtain

$$
\begin{aligned}
\left|\mathfrak{f}_{n}(\mathrm{z})\right| & \leq r+\sum_{j=2}^{\infty}\left(a_{j}+b_{j}\right) r^{2} \\
& \leq r+\frac{(1-\delta) r^{2}}{\left[\frac{\zeta+\xi+\varrho+\vartheta}{\zeta+\varrho}\right]^{n}\left[\frac{\zeta+\xi+\varrho+\vartheta}{\zeta+\varrho}-\delta\right]} \sum_{j=2}^{\infty} \frac{L_{n}\left[\frac{\zeta+(\xi+\vartheta)(j-1)+\varrho}{\zeta+\varrho}-\delta\right]}{1-\delta} a_{j} \\
& +\frac{(1-\delta) r^{2}}{\left[\frac{\zeta+\xi+\varrho+\vartheta}{\zeta+\varrho}\right]^{n}\left[\frac{\zeta+\xi+\varrho+\vartheta}{\zeta+\varrho}-\delta\right]} \sum_{j=2}^{\infty} \frac{M_{n}\left[\frac{-\zeta+(\xi+\vartheta)(j+1)-\varrho}{\zeta+\varrho}+\delta\right]}{1-\delta} b_{j} \\
& \leq r+\frac{(1-\delta)}{\left[\frac{\zeta+\xi+\varrho+\vartheta}{\zeta+\varrho}\right]^{n}\left[\frac{\zeta+\xi+\varrho+\vartheta}{\zeta+\varrho}-\delta\right]} r^{2} .
\end{aligned}
$$

We can obtain covering result in following corollary with the left-hand side inequality in Theorem 2.4.

Corollary 2.1. Let \mathfrak{f}_{n} of the form (भ) be so that $\mathfrak{f}_{n} \in \overline{\mathcal{S H}}^{0}(\zeta, \vartheta, \varrho, \xi, n, \delta)$, where $\xi+\vartheta \geq 2(\zeta+\varrho), n \in \mathbb{N}_{0}, 0 \leq \delta<1$. Then

$$
\left\{\mathrm{w}:|\mathrm{w}|<1-\frac{(1-\delta)}{\left[\frac{\zeta+\xi+\varrho+\vartheta}{\zeta+\varrho}\right]^{n}\left[\frac{\zeta+\xi+\varrho+\vartheta}{\zeta+\varrho}-\delta\right]}\right\} \subset \mathfrak{f}_{n}(\mathbb{D})
$$

Theorem 2.5. Under convex combinations $\overline{\mathcal{S H}}^{0}(\zeta, \vartheta, \varrho, \xi, n, \delta)$ is closed.

Proof. Let $\mathfrak{f}_{n_{i}} \in \overline{\mathcal{S H}}^{0}(\zeta, \vartheta, \varrho, \xi, n, \delta)$ for $i=1,2, \ldots$, where $\mathfrak{f}_{n_{i}}$ is given by

$$
\mathfrak{f}_{n_{i}}(\mathrm{z})=\mathrm{z}-\sum_{j=2}^{\infty} a_{j_{i}} \mathrm{z}^{j}+(-1)^{n} \sum_{j=2}^{\infty} b_{j_{i}} \bar{z}^{j} .
$$

Then by (10),

$$
\begin{equation*}
\sum_{j=2}^{\infty} \frac{L_{n}\left[\frac{\zeta+(\xi+\vartheta)(j-1)+\varrho}{\zeta+\varrho}-\delta\right]}{1-\delta} a_{j_{i}}+\sum_{j=2}^{\infty} \frac{M_{n}\left[\frac{-\zeta+(\xi+\vartheta)(j+1)-\varrho}{\zeta+\varrho}+\delta\right]}{1-\delta} b_{j_{i}} \leq 1 \tag{12}
\end{equation*}
$$

For $\sum_{i=1}^{\infty} \mathfrak{t}_{i}=1,0<\mathfrak{t}_{i}<1$, the convex combination of $\mathfrak{f}_{n_{i}}$ can be expressed as

$$
\sum_{i=1}^{\infty} \mathfrak{t}_{i} \mathfrak{f}_{n_{i}}(z)=z-\sum_{j=2}^{\infty}\left(\sum_{i=1}^{\infty} \mathfrak{t}_{i} a_{j_{i}}\right) z^{j}+(-1)^{n} \sum_{j=2}^{\infty}\left(\sum_{i=1}^{\infty} \mathfrak{t}_{i} b_{j_{i}}\right) \bar{z}^{j} .
$$

Then by (12),

$$
\begin{aligned}
& \sum_{j=2}^{\infty} \frac{L_{n}\left[\frac{\zeta+(\xi+\vartheta)(j-1)+\varrho}{\zeta+\varrho}-\delta\right]}{1-\delta}\left(\sum_{i=1}^{\infty} \mathfrak{t}_{i} a_{j_{i}}\right) \\
& +\sum_{j=2}^{\infty} \frac{M_{n}\left[\frac{-\zeta+(\xi+\vartheta)(j+1)-\varrho}{\zeta+\varrho}+\delta\right]}{1-\delta}\left(\sum_{i=1}^{\infty} \mathfrak{t}_{i} b_{j_{i}}\right) \\
& =\sum_{i=1}^{\infty} \mathfrak{t}_{i} \sum_{j=2}^{\infty} \frac{L_{n}\left[\frac{\zeta+(\xi+\vartheta)(j-1)+\varrho}{\zeta+\varrho}-\delta\right]}{1-\delta} a_{j_{i}} \\
& +\sum_{i=1}^{\infty} \mathfrak{t}_{i} \sum_{j=2}^{\infty} \frac{M_{n}\left[\frac{-\zeta+(\xi+\vartheta)(j+1)-\varrho}{\zeta+\varrho}+\delta\right]}{1-\delta} b_{j_{i}} \\
& \leq \sum_{i=1}^{\infty} \mathfrak{t}_{i}=1
\end{aligned}
$$

This is the condition required by 100 and so $\sum_{i=1}^{\infty} \mathrm{t}_{i} \mathfrak{f}_{n_{i}}(\mathrm{z}) \in \overline{\mathcal{S H}}^{0}(\zeta, \vartheta, \varrho, \xi, n, \delta)$.

References

Al-Oboudi, F. (2004). On univalent functions defined by a generalized salagean operator. International Journal of Mathematics and Mathematical Sciences, 27:1429-1436.

Avci, Y. and Zlotkiewicz, E. (1990). On harmonic univalent mappings. Journal of Statistical Theory and Practice, 44:1-7.
Bayram, H. and Yalcin, S. (2017). A subclass of harmonic univalent functions defined by a linear operator. Palestine Journal of Mathematics, 6(2):320-326.

Catas, A. (2009). On a certain differential sandwich theorem associated with a new generalized derivative operator. General Mathematics, 17(4):83-95.
Cho, N. and Kim, T. (2003). Multiplier transformations and strongly close-toconvex functions. Bulletin of the Korean Mathematical Society, 40(3):399410.

Cho, N. and Srivastava, H. M. (2003). Argument estimates of certain analytic functions defined by a class of multiplier transformations. Mathematical Computational Modelling, 37:39-49.

Clunie, J. and Sheil-Small, T. (1984). Harmonic univalent function. Annales Academica Scientiarum Fennicae Mathematica, 9:3-25.

Flett, T. M. (1972). The dual of an inequality of hardy and littlewood and some related inequalities. Journal of Mathematical Analysis and Applications, 38:746-765.

Jahangiri, J. M. (1999). Harmonic functions starlike in the unit disk. Journal of Mathematical Analysis and Applications, 235:470-477.

Jahangiri, J. M., Murugusundaramoorthy, G., and Vijaya, K. (2002). Salageantype harmonic univalent functions. South Pacific Journal of Pure and Applied Mathematics, 2:77-82.

Kumar, S. and Ravichandran, V. (2017). Functions defined by coefficient inequalities. Malaysian Journal of Mathematical Sciences, 11:365-375.

Olatunji, S. and Dutta, H. (2019). Sigmoid function in the space of univalent I»-pseudo-(p, q)-derivative operators related to shell-like curves connected with fibonacci numbers of sakaguchi type functions. Malaysian Journal of Mathematical Sciences, 13:95-106.

Salagean, G. S. (1983). Salagean-type harmonic univalent functions. Lecture Notes in Mathematics Springer- Verlag Heidelberg, 1013:362-372.

Silverman, H. (1998). Harmonic univalent functions with negative coefficients. Journal of Mathematical Analysis and Applications, 220:283-289.

Silverman, H. and Silvia, E. M. (1999). Subclasses of harmonic univalent functions. New Zealand Journal of Mathematics, 28:275-284.

Uralegaddi, B. and Somanatha, C. (1992). Certain classes of univalent functions, Current Topics in Analytical Function Theory. World Scientific Publishing Co. Pte. Ltd. pp.371-374, Edited by H. M. Srivastava and S. Owa, P O Box 128, Farrer Road, Singapore 9128.

Yasar, E. and Yalcin, S. (2012). Generalized salagean-type harmonic univalent functions. Studia Universitatis Babes-Bolyai Mathematica, 57(3):395-403.

Yasar, E. and Yalcin, S. (2013). Certain properties of a subclasses of harmonic functions. Applied Mathematics and Information Sciences, 7(5):1749-1753.

