Malaysian Journal of Mathematical Sciences 14(1): 63-75 (2020)

MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES

Journal homepage: http://einspem.upm.edu.my/journal

On a New Subclass of Harmonic Univalent Functions

Bayram, H. * and Yalçin, S.¹

¹Department of Mathematics, Faculty of Arts and Science,, Bursa Uludağ University, Bursa, Turkey

> E-mail: hbayram@uludag.edu.tr * Corresponding author

> > Received: 26 February 2018 Accepted: 4 December 2019

ABSTRACT

In the acquaint article, we scrutinize some fundamental attribute of a subclass of harmonic univalent functions defined by a new alteration. Like these, coefficient disparities, distortion bounds, convolutions, convex combinations and extreme points.

Keywords: Harmonic, univalent, a new linear operator, multiplier transformation, distortion bounds. Bayram, H. & Yalçin, S.

1. Introduction

Let $\mathbb{D} = \{\mathbf{z} : |\mathbf{z}| < 1\}$ indicates the open unit disk and let \mathcal{H} denotes the family of continuous complex valued harmonic functions in \mathbb{D} . Let \mathcal{A} denotes the class of functions which are analytic in \mathbb{D} . It is clear that \mathcal{A} is a subclass of \mathcal{H} . If \mathfrak{f} and \mathfrak{g} are selected from \mathcal{A} , harmonic \mathfrak{f} function in \mathbb{D} can be expressed as $\mathfrak{f} = \mathfrak{h} + \overline{\mathfrak{g}}$. It is usually called the analytic part of \mathfrak{f} for the \mathfrak{h} function and the co-analytic part for the \mathfrak{g} function. We know that \mathcal{S} denotes the class of normalized analytic univalent functions in \mathbb{D} . Attention that if the co-analytic part's members are zero, then \mathcal{H} degrades to the class of \mathcal{S} . A sufficient and necessary condition for \mathfrak{f} to be sense-preserving and locally univalent in \mathbb{D} is that $|\mathfrak{h}'(z)| > |\mathfrak{g}'(z)|$ (see Clunie and Sheil-Small (1984)). \mathcal{SH} denotes the class of functions $\mathfrak{f} = \mathfrak{h} + \overline{\mathfrak{g}}$ which are harmonic univalent and sense-preserving in the unit disk \mathbb{D} for which $\mathfrak{f}(0) = \mathfrak{f}_z(0) - 1 = 0$. Also, attention that if the co-analytic part of \mathfrak{f} function is zero, then \mathcal{SH} reduces to \mathcal{S} . Then we can state \mathfrak{h} analytic functions as for $\mathfrak{f} = \mathfrak{h} + \overline{\mathfrak{g}}$ as follows

$$\mathfrak{h}(\mathsf{z}) = \mathsf{z} + \sum_{j=2}^{\infty} a_j \mathsf{z}^j \quad \text{and} \quad \mathfrak{g}(\mathsf{z}) = \sum_{j=1}^{\infty} b_j \mathsf{z}^j.$$
 (1)

One demonstrates clearly that the sense-preserving feature alludes to $|b_1| < 1$. The subclass SH^0 of SH contains entire functions in SH which have the extra feature $f_{\bar{z}}(0) = 0$.

Geometric functions theory has been studied a lot in recent years (For example; Olatunji and Dutta (2019), Kumar and Ravichandran (2017)).

Clunie and Sheil-Small (1984) researched SH class's geometric subclasses as well as some coefficient bounds. Since then, there have been many articles about SH and related subclasses.

For $\mathfrak{f} \in \mathcal{S}$, the differential operator D^n $(n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\})$ of \mathfrak{f} was acquainted by Salagean (1983). This operator was developed and modified by many researchers over time. As a simple example for $\mathfrak{f} = \mathfrak{h} + \overline{\mathfrak{g}}$ given by (1), Jahangiri et al. (2002) defined the modified Salagean operator of \mathfrak{f} as

$$D^{n}\mathfrak{f}(\mathsf{z}) = D^{n}\mathfrak{h}(\mathsf{z}) + (-1)^{n}D^{n}\mathfrak{g}(\mathsf{z}),$$

where

$$D^{n}\mathfrak{h}(\mathsf{z}) = \mathsf{z} + \sum_{j=2}^{\infty} j^{n}a_{j}\mathsf{z}^{j}$$
 and $D^{n}\mathfrak{g}(\mathsf{z}) = \sum_{j=1}^{\infty} j^{n}b_{j}\mathsf{z}^{j}.$

Now, for $\mathfrak{f} \in \mathcal{A}$ functions, let $\mathfrak{f} = \mathfrak{h} + \overline{\mathfrak{g}}$ like (1), we define the modified multiplier

Malaysian Journal of Mathematical Sciences

On a New Subclass of Harmonic Univalent Functions

transformation of f

$$I_{\vartheta}^{0,\zeta}(\varrho,\xi)\mathfrak{f}(\mathsf{z}) = \mathfrak{f}(\mathsf{z}),$$
$$I_{\vartheta}^{1,\zeta}(\varrho,\xi)\mathfrak{f}(\mathsf{z}) = \frac{\zeta - \xi + \varrho - \vartheta}{\zeta + \varrho}\mathfrak{f}(\mathsf{z}) + \frac{\xi + \vartheta}{\zeta + \varrho}(\mathsf{z}\mathfrak{f}_{\mathsf{z}}(\mathsf{z}) - \overline{\mathsf{z}}\mathfrak{f}_{\overline{\mathsf{z}}}(\mathsf{z}))$$
(2)

$$I_{\vartheta}^{n,\zeta}(\varrho,\xi)\mathfrak{f}(\mathsf{z}) = I_{\vartheta}^{1,\zeta}(\varrho,\xi)\left(I_{\vartheta}^{n-1,\zeta}(\varrho,\xi)\mathfrak{f}(\mathsf{z})\right). \ (n\in\mathbb{N}_0)$$
(3)

Where $\zeta, \xi, \vartheta, \varrho > 0$. If f is given by (1), then from (2) and (3) we see that

$$I_{\vartheta}^{n,\zeta}(\varrho,\xi)\mathfrak{f}(\mathsf{z}) = \mathsf{z} + \sum_{j=2}^{\infty} \left[\frac{\zeta + (\xi+\vartheta)(j-1) + \varrho}{\zeta + \varrho}\right]^n a_j \mathsf{z}^j + (-1)^n \sum_{j=1}^{\infty} \left[\frac{-\zeta + (\xi+\vartheta)(j+1) - \varrho}{\zeta + \varrho}\right]^n \overline{b_j \mathsf{z}^j}.$$
(4)

Let f is given by (1). Thus we obtain that

$$I_{\vartheta}^{n,\zeta}(\varrho,\xi)\mathfrak{f}(\mathsf{z}) := \mathfrak{f}(\mathsf{z}) * \underbrace{\phi_{\varrho,\vartheta}^{\xi,\zeta}(\mathsf{z}) * \dots * \phi_{\varrho,\vartheta}^{\xi,\zeta}(\mathsf{z})}_{n \ times} = \mathfrak{h} * \underbrace{\phi_{1,\varrho,\vartheta}^{\xi,\zeta}(\mathsf{z}) * \dots * \phi_{1,\varrho,\vartheta}^{\xi,\zeta}(\mathsf{z})}_{n \ times} + \overline{\mathfrak{g}} * \underbrace{\phi_{2,\varrho,\vartheta}^{\xi,\zeta} * \dots * \phi_{2,\varrho,\vartheta}^{\xi,\zeta}}_{n \ times}, (5)$$

where $"\ast"$ shows convolution of power series or the usual Hadamard product and

$$\begin{split} \phi_{\varrho,\vartheta}^{\xi,\zeta}(\mathsf{z}) &= \frac{\mathsf{z} - \left(\frac{\zeta - \xi + \varrho - \vartheta}{\zeta + \varrho}\right)\mathsf{z}^2}{(1 - \mathsf{z})^2} + \frac{\left[1 - \frac{2(\xi + \vartheta)}{\zeta + \varrho}\right]\bar{\mathsf{z}} - \left[1 - \frac{\xi + \vartheta}{\zeta + \varrho}\right]\bar{\mathsf{z}}^2}{(1 - \bar{\mathsf{z}})^2} \\ &= \phi_{1,\varrho,\vartheta}^{\xi,\zeta}(\mathsf{z}) + \overline{\phi_{2,\varrho,\vartheta}^{\xi,\zeta}(\mathsf{z})} \end{split}$$

If special numbers are selected for the parameters $n, \zeta, \vartheta, \varrho$ and ξ The following operators, which are examined by various authors, are obtained:

for $\mathfrak{f} \in \mathcal{A}$,

(i) $I_1^{n,1}(0,0)\mathfrak{f}(\mathsf{z}) = D^n\mathfrak{f}(\mathsf{z})$ (Salagean (1983)),

(ii) $I^{n,1}_{\vartheta}(\lambda,0)\mathfrak{f}(\mathsf{z}) = I^n_{\vartheta}\mathfrak{f}(\mathsf{z})$ (Cho and Srivastava (2003), Cho and Kim (2003), Flett (1972)),

(iii) $I_1^{n,1}(1,0)\mathfrak{f}(\mathsf{z})=I^n\mathfrak{f}(\mathsf{z})$ (Uralegaddi and Somanatha (1992)),

Malaysian Journal of Mathematical Sciences

$$\begin{array}{l} (\mathrm{iv}) \ I_{\vartheta}^{n,1}(0,0)\mathfrak{f}(\mathsf{z}) = D_{\vartheta}^{n}\mathfrak{f}(\mathsf{z}) \ (\mathrm{Al-Oboudi} \ (2004)), \\ (\mathrm{v}) \ I_{\vartheta}^{n,1}(l,0)\mathfrak{f}(\mathsf{z}) = D^{n}(\vartheta,l)\mathfrak{f}(\mathsf{z}); l > 0 \ (\mathrm{Catas} \ (2009)) \\ \mathrm{for} \ \mathfrak{f} \in \mathcal{H}, \\ (\mathrm{iv}) \ I_{1}^{n,1}(0,0)\mathfrak{f}(\mathsf{z}) = D^{n}\mathfrak{f}(\mathsf{z}) \ (\mathrm{Jahangiri} \ \mathrm{et} \ \mathrm{al.} \ (2002)), \\ (\mathrm{v}) \ I_{1}^{n,1}(\gamma,0)\mathfrak{f}(\mathsf{z}) = I_{\gamma}^{n}\mathfrak{f}(\mathsf{z}); \gamma > 0 \ (\mathrm{Yasar} \ \mathrm{and} \ \mathrm{Yalcin} \ (2012)), \\ (\mathrm{vi}) \ I_{\vartheta}^{n,1}(0,0)\mathfrak{f}(\mathsf{z}) = D_{\vartheta}^{n}\mathfrak{f}(\mathsf{z}) \ (\mathrm{Yasar} \ \mathrm{and} \ \mathrm{Yalcin} \ (2013)), \\ (\mathrm{vii}) \ I_{\varrho}^{n,\gamma}(\varrho,0)\mathfrak{f}(\mathsf{z}) = I_{\gamma,\varrho}^{n}\mathfrak{f}(\mathsf{z}) \ (\mathrm{Bayram} \ \mathrm{and} \ \mathrm{Yalcin} \ (2017)). \end{array}$$

 $SH(\zeta, \vartheta, \varrho, \xi, n, \delta)$ represents the subclass of SH comprising of functions f in type (1) which provide below the circumstance

$$\operatorname{Re}\left(\frac{I_{\vartheta}^{n+1,\zeta}(\varrho,\xi)\mathfrak{f}(\mathsf{z})}{I_{\vartheta}^{n,\zeta}(\varrho,\xi)\mathfrak{f}(\mathsf{z})}\right) \geq \delta, \quad 0 \leq \delta < 1$$
(6)

where $I_{\vartheta}^{n,\zeta}\mathfrak{f}(\mathsf{z})$ is described by (4).

We allow to the subclass $\overline{SH}(\zeta, \vartheta, \varrho, \xi, n, \delta)$ occurring of harmonic functions $\mathfrak{f}_n = \mathfrak{h} + \overline{\mathfrak{g}}_n$ in SH, therefore, \mathfrak{h} and \mathfrak{g}_n are in type

$$\mathfrak{h}(\mathsf{z}) = \mathsf{z} - \sum_{j=2}^{\infty} a_j \mathsf{z}^j, \ \mathfrak{g}_n(\mathsf{z}) = (-1)^n \sum_{j=1}^{\infty} b_j \mathsf{z}^j, \quad a_j, \ b_j \ge 0.$$
(7)

If the parameters are chosen appropriately, $\mathcal{SH}(\zeta, \vartheta, \varrho, \xi, n, \delta)$ classes are reduced to different subclasses of harmonic univalent functions. Like,

(i) $SH(1, 1, 0, 0, 0, 0) = SH^*(0)$ (Avci and Zlotkiewicz (1990), Silverman (1998), Silverman and Silvia (1999)),

(ii) $\mathcal{SH}(1,1,0,0,0,\delta) = \mathcal{SH}^*(\delta)$ (Jahangiri (1999)),

(iii) SH(1, 1, 0, 0, 1, 0) = KH(0) (Avci and Zlotkiewicz (1990), Silverman (1998), Silverman and Silvia (1999)),

(iv)
$$\mathcal{SH}(1, 1, 0, 0, 1, \delta) = \mathcal{KH}(\delta)$$
 (Jahangiri (1999)),

(v)
$$\mathcal{SH}(1, 1, 0, 0, n, \delta) = \mathcal{H}(n, \delta)$$
 (Jahangiri et al. (2002)),

Malaysian Journal of Mathematical Sciences

On a New Subclass of Harmonic Univalent Functions

- (vi) $\mathcal{SH}(1, 1, \varrho, 0, n, \delta) = \mathcal{SH}(\gamma, n, \delta)$ (Yasar and Yalcin (2012)),
- (vii) $\mathcal{SH}(1, \vartheta, 0, 0, n, \delta) = \mathcal{SH}(\vartheta, n, \delta)$ (Yasar and Yalcin (2013)),
- (viii) $\mathcal{SH}(\gamma, \varrho, \varrho, 0, n, \delta) = \mathcal{SH}(\gamma, \varrho, n, \delta)$ (Bayram and Yalcin (2017)),

Define $\mathcal{SH}^0(\zeta, \vartheta, \varrho, \xi, n, \delta) := \mathcal{SH}(\zeta, \vartheta, \varrho, \xi, n, \delta) \cap \mathcal{SH}^0$ and

$$\overline{\mathcal{SH}}^{0}(\zeta,\vartheta,\varrho,\xi,n,\delta) := \overline{\mathcal{SH}}(\zeta,\vartheta,\varrho,\xi,n,\delta) \cap SH^{0}.$$

2. Primary Conclusions

Theorem 2.1. Let $\mathfrak{f} = \mathfrak{h} + \overline{\mathfrak{g}}$. Let \mathfrak{h} and \mathfrak{g} are given by (1) with $b_1 = 0$. Let

$$\sum_{j=2}^{\infty} \left[\frac{\zeta + (\xi + \vartheta)(j-1) + \varrho}{\zeta + \varrho} \right]^n \left[\frac{\zeta + (\xi + \vartheta)(j-1) + \varrho}{\zeta + \varrho} - \delta \right] |a_j| + \sum_{j=2}^{\infty} \left[\frac{-\zeta + (\xi + \vartheta)(j+1) - \varrho}{\zeta + \varrho} \right]^n \left[\frac{-\zeta + (\xi + \vartheta)(j+1) - \varrho}{\zeta + \varrho} + \delta \right] |b_j| \le 1 - \delta,$$
(8)

where $\xi + \vartheta \geq 2(\zeta + \varrho)$, $n \in \mathbb{N}_0$, $0 \leq \delta < 1$. In that case f is harmonic univalent, sense-preserving in \mathbb{D} and $\mathfrak{f} \in \mathcal{SH}^0(\zeta, \vartheta, \varrho, \xi, n, \delta)$.

As a special notation for convenience, we make

$$L_n = \left[\frac{\zeta + (\xi + \vartheta)(j - 1) + \varrho}{\zeta + \varrho}\right]^n$$

 and

$$M_n = \left[\frac{-\zeta + (\xi + \vartheta)(j + 1) - \varrho}{\zeta + \varrho}\right]^n$$

in this article.

Proof. If $z_1 \neq z_2$,

$$\begin{split} \left| \frac{\mathfrak{f}(\mathbf{z}_1) - \mathfrak{f}(\mathbf{z}_2)}{\mathfrak{h}(\mathbf{z}_1) - \mathfrak{h}(\mathbf{z}_2)} \right| &\geq 1 - \left| \frac{\mathfrak{g}(\mathbf{z}_1) - \mathfrak{g}(\mathbf{z}_2)}{\mathfrak{h}(\mathbf{z}_1) - \mathfrak{h}(\mathbf{z}_2)} \right| = 1 - \left| \frac{\sum_{j=2}^{\infty} b_j \left(\mathbf{z}_1^j - \mathbf{z}_2^j \right)}{(\mathbf{z}_1 - \mathbf{z}_2) + \sum_{j=2}^{\infty} a_j \left(\mathbf{z}_1^j - \mathbf{z}_2^j \right)} \right| \\ &> 1 - \frac{\sum_{j=2}^{\infty} j \left| b_j \right|}{1 - \sum_{j=2}^{\infty} j \left| a_j \right|} \\ &\geq 1 - \frac{\sum_{j=2}^{\infty} \frac{M_n \left[\frac{-\zeta + (\xi + \vartheta)(j+1) - \varrho}{\zeta + \varrho} \right]}{1 - \delta} \left| b_j \right|}{1 - \sum_{j=2}^{\infty} \frac{L_n \left[\frac{\zeta + (\xi + \vartheta)(j-1) + \varrho}{1 - \delta} \right]}{1 - \delta} \left| a_j \right|} \geq 0, \end{split}$$

that demonstrates univalence. The attention that $\mathfrak f$ is sense-preserving in $\mathbb D.$ Therefore

$$\begin{split} |\mathfrak{h}'(\mathbf{z})| &\geq 1 - \sum_{j=2}^{\infty} j |a_j| |\mathbf{z}|^{j-1} \\ &> 1 - \sum_{j=2}^{\infty} \frac{L_n \left[\frac{\zeta + (\xi + \vartheta)(j-1) + \varrho}{\zeta + \varrho} - \delta \right]}{1 - \delta} |a_j| \\ &\geq \sum_{j=2}^{\infty} \frac{M_n \left[\frac{-\zeta + (\xi + \vartheta)(j+1) - \varrho}{\zeta + \varrho} + \delta \right]}{1 - \delta} |b_j| \\ &> \sum_{j=2}^{\infty} j |b_j| |\mathbf{z}|^{j-1} \\ &\geq |\mathfrak{g}'(\mathbf{z})| \,. \end{split}$$

If we use the consubstantiality that $\operatorname{Re}\omega \geq \delta \Leftrightarrow |1 - \delta + \omega| \geq |1 + \delta - \omega|$, it suffices to prove that

$$\left| (1-\delta) I_{\vartheta}^{n,\zeta} \mathfrak{f}(\mathsf{z}) + I_{\vartheta}^{n+1,\zeta} \mathfrak{f}(\mathsf{z}) \right| - \left| (1+\delta) I_{\vartheta}^{n,\zeta} \mathfrak{f}(\mathsf{z}) - I_{\vartheta}^{n+1,\zeta} \mathfrak{f}(\mathsf{z}) \right| \ge 0.$$
(9)

Malaysian Journal of Mathematical Sciences

Substituting for $I^{n,\zeta}_{\vartheta}\mathfrak{f}(\mathsf{z})$ and $I^{n+1,\zeta}_{\vartheta}\mathfrak{f}(\mathsf{z})$ in (9), we have

$$\begin{split} & \left| (1-\delta)I_{\vartheta}^{n,\zeta}\mathfrak{f}(\mathbf{z}) + I_{\vartheta}^{n+1,\zeta}\mathfrak{f}(\mathbf{z}) \right| - \left| (1+\delta)I_{\vartheta}^{n,\zeta}\mathfrak{f}(\mathbf{z}) - I_{\vartheta}^{n+1,\zeta}\mathfrak{f}(\mathbf{z}) \right| \\ \geq & 2(1-\delta)\left|\mathbf{z}\right| - \sum_{j=2}^{\infty}L_{n}\left[\frac{\zeta + (\xi+\vartheta)(j-1) + \varrho}{\zeta + \varrho} + 1 - \delta \right] \left|a_{j}\right| \left|\mathbf{z}\right|^{j} \\ & -\sum_{j=2}^{\infty}M_{n}\left[\frac{-\zeta + (\xi+\vartheta)(j+1) - \varrho}{\zeta + \varrho} - 1 + \delta \right] \left|b_{j}\right| \left|\mathbf{z}\right|^{j} \\ & -\sum_{j=2}^{\infty}L_{n}\left[\frac{\zeta + (\xi+\vartheta)(j-1) + \varrho}{\zeta + \varrho} - 1 - \delta \right] \left|a_{j}\right| \left|\mathbf{z}\right|^{j} \\ & -\sum_{j=2}^{\infty}M_{n}\left[\frac{-\zeta + (\xi+\vartheta)(j+1) - \varrho}{\zeta + \varrho} + 1 + \delta \right] \left|b_{j}\right| \left|\mathbf{z}\right|^{j} \\ > & 2(1-\delta)\left|\mathbf{z}\right| \left\{ 1 - \sum_{j=2}^{\infty}L_{n}\left[\frac{\zeta + (\xi+\vartheta)(j-1) + \varrho}{\zeta + \varrho} - \delta \right] \left|a_{j}\right| \\ & -\sum_{j=2}^{\infty}M_{n}\left[\frac{-\zeta + (\xi+\vartheta)(j-1) - \varrho}{\zeta + \varrho} + \delta \right] \left|b_{j}\right| \right\}. \end{split}$$

Then the last statement is not negative by (8).

Theorem 2.2. Let $\mathfrak{f}_n = \mathfrak{h} + \overline{\mathfrak{g}}_n$ be given by (7) with $b_1 = 0$. Then $\mathfrak{f}_n \in \overline{SH}^0(\zeta, \vartheta, \varrho, \xi, n, \delta)$ if and only if

$$\sum_{j=2}^{\infty} L_n \left[\frac{\zeta + (\xi + \vartheta)(j-1) + \varrho}{\zeta + \varrho} - \delta \right] a_j + \sum_{j=2}^{\infty} M_n \left[\frac{-\zeta + (\xi + \vartheta)(j+1) - \varrho}{\zeta + \varrho} + \delta \right] b_j$$
$$\leq 1 - \delta, \tag{10}$$

where $\xi + \vartheta \ge 2(\zeta + \varrho), \ n \in \mathbb{N}_0, \ 0 \le \delta < 1.$

Proof. The "if" part of the proof is obtained by Theorem 1 $\overline{SH}^0(\zeta, \vartheta, \varrho, \xi, n, \delta) \subset S\mathcal{H}^0(\zeta, \vartheta, \varrho, \xi, n, \delta)$. To show the "only if" part, we need to show $\mathfrak{f}_n \notin \overline{S\mathcal{H}}^0(\zeta, \vartheta, \varrho, \xi, n, \delta)$ if the stipulation (10) doesn't hold. Attention that a sufficient and necessary condition for $\mathfrak{f}_n = \mathfrak{h} + \overline{\mathfrak{g}}_n$ given by (7), to be in $\overline{S\mathcal{H}}^0(\zeta, \vartheta, \varrho, \xi, n, \delta)$ is that (6) to be satisfied. This is same with

Malaysian Journal of Mathematical Sciences

$$\operatorname{Re}\left\{\frac{(1-\delta)\mathsf{z}-\sum_{j=2}^{\infty}L_n\left[\frac{\zeta+(\xi+\vartheta)(j-1)+\varrho}{\zeta+\varrho}-\delta\right]a_j\mathsf{z}^j-\sum_{j=2}^{\infty}M_n\left[\frac{-\zeta+(\xi+\vartheta)(j+1)-\varrho}{\zeta+\varrho}+\delta\right]b_j\bar{\mathsf{z}}^j}{\mathsf{z}-\sum_{j=2}^{\infty}L_na_j\mathsf{z}^j+\sum_{j=2}^{\infty}M_nb_j\bar{\mathsf{z}}^j}\right\}\geq 0.$$

The above stipulation must hold for all values of |z| = r < 1. With selecting these values of z on the positive real axis where $0 \le z = r < 1$. We ought to have

$$\frac{1-\delta-\sum_{j=2}^{\infty}\left(L_n\left[\frac{\zeta+(\xi+\vartheta)(j-1)+\varrho}{\zeta+\varrho}-\delta\right]a_j-M_n\left[\frac{-\zeta+(\xi+\vartheta)(j+1)-\varrho}{\zeta+\varrho}+\delta\right]b_j\right)r^{j-1}}{1-\sum_{j=2}^{\infty}L_na_jr^{j-1}+\sum_{j=2}^{\infty}M_nb_jr^{j-1}}$$
(11)

If the stipulation (10) is not valid, then the expression in (11) is negative for r values approaching to 1. Therefore there exist $z_0 = r_0$ in (0, 1) for which the quotient in (11) is negative.

This shows the required stipulation for $f_n \in \overline{\mathcal{SH}}^0(\zeta, \vartheta, \varrho, \xi, n, \delta)$.

Theorem 2.3. Let \mathfrak{f}_n be given by (7). For the \mathfrak{f}_n functions to be in the $\overline{SH}^0(\zeta, \vartheta, \varrho, \xi, n, \delta)$ class, a necessary and sufficient condition is

$$\mathfrak{f}_n(\mathsf{z}) = \sum_{j=1}^{\infty} \left(X_j \mathfrak{h}_j(\mathsf{z}) + Y_j \mathfrak{g}_{n_j}(\mathsf{z}) \right),$$

where

$$\mathfrak{h}_1(\mathsf{z}) = \mathsf{z}, \quad \mathfrak{h}_j(\mathsf{z}) = \mathsf{z} - \frac{1 - \delta}{L_n \left[\frac{\zeta + (\xi + \vartheta)(j - 1) + \varrho}{\zeta + \varrho} - \delta\right]} \mathsf{z}^j \quad (j = 2, 3, \ldots),$$

and for j = 2, 3, ...

$$\mathfrak{g}_{n_1}(\mathsf{z}) = \mathsf{z}, \quad \mathfrak{g}_{n_j}(\mathsf{z}) = \mathsf{z} + (-1)^n \frac{1 - \delta}{M_n \left[\frac{-\zeta + (\xi + \vartheta)(j+1) - \varrho}{\zeta + \varrho} + \delta\right]} \overline{\mathsf{z}}^j$$

$$X_j \ge 0, \ Y_j \ge 0, \sum_{j=1}^{\infty} (X_j + Y_j) = 1, \ \xi + \vartheta \ge 2(\zeta + \varrho), \ n \in \mathbb{N}_0, \ 0 \le \delta < 1.$$

Malaysian Journal of Mathematical Sciences

On a New Subclass of Harmonic Univalent Functions

Especially, the extreme points of $\overline{SH}^0(\zeta, \vartheta, \varrho, \xi, n, \delta)$ are $\{\mathfrak{h}_j\}$ and $\{\mathfrak{g}_{n_j}\}$.

Proof. For \mathfrak{f}_n functions in type (7) we have

$$\begin{split} \mathfrak{f}_n(\mathsf{z}) &= \sum_{j=1}^{\infty} \left(X_j \mathfrak{h}_j(\mathsf{z}) + Y_j \mathfrak{g}_{n_j}(\mathsf{z}) \right) \\ &= \sum_{j=1}^{\infty} \left(X_j + Y_j \right) \mathsf{z} - \sum_{j=2}^{\infty} \frac{1 - \delta}{L_n \left[\frac{\zeta + (\xi + \vartheta)(j-1) + \varrho}{\zeta + \varrho} - \delta \right]} X_j \mathsf{z}^j \\ &+ (-1)^n \sum_{j=2}^{\infty} \frac{1 - \delta}{M_n \left[\frac{-\zeta + (\xi + \vartheta)(j+1) - \varrho}{\zeta + \varrho} + \delta \right]} Y_j \overline{\mathsf{z}}^j. \end{split}$$

Then

$$\sum_{j=2}^{\infty} \frac{L_n \left[\frac{\zeta + (\xi + \vartheta)(j-1) + \varrho}{\zeta + \varrho} - \delta \right]}{1 - \delta} \left(\frac{1 - \alpha}{L_n \left[\frac{\zeta + (\xi + \vartheta)(j-1) + \varrho}{\zeta + \varrho} - \delta \right]} X_j \right)$$
$$+ \sum_{j=2}^{\infty} \frac{M_n \left[\frac{-\zeta + (\xi + \vartheta)(j+1) - \varrho}{\zeta + \varrho} + \delta \right]}{1 - \delta} \left(\frac{1 - \delta}{M_n \left[\frac{-\zeta + (\xi + \vartheta)(j+1) - \varrho}{\zeta + \varrho} + \delta \right]} Y_j \right)$$
$$= \sum_{j=2}^{\infty} X_j + \sum_{j=2}^{\infty} Y_j = 1 - X_1 - Y_1 \le 1$$

and so $\mathfrak{f}_n \in \overline{\mathcal{SH}}^0(\zeta, \vartheta, \varrho, \xi, n, \delta)$. Conversely, if $\mathfrak{f}_n \in \overline{\mathcal{SH}}^0(\zeta, \vartheta, \varrho, \xi, n, \delta)$, then

$$a_j \leq \frac{1-\delta}{L_n \left[\frac{\zeta + (\xi + \vartheta)(j-1) + \varrho}{\zeta + \varrho} - \delta\right]}$$

 and

$$b_j \le \frac{1-\delta}{M_n \left[\frac{-\zeta + (\xi+\vartheta)(j+1)-\varrho}{\zeta+\varrho} + \delta\right]}.$$

 Set

$$\begin{split} X_j &= \frac{L_n \left[\frac{\zeta + (\xi + \vartheta)(j - 1) + \varrho}{\zeta + \varrho} - \delta \right]}{1 - \delta} a_j, \ (j = 2, 3, \ldots) \\ Y_j &= \frac{M_n \left[\frac{-\zeta + (\xi + \vartheta)(j + 1) - \varrho}{\zeta + \varrho} + \delta \right]}{1 - \delta} b_j, \ (j = 2, 3, \ldots) \end{split}$$

Malaysian Journal of Mathematical Sciences

 and

$$X_1 + Y_1 = 1 - \left(\sum_{j=2}^{\infty} X_j + Y_j\right)$$

where $X_j, Y_j \ge 0$. If so, as necessary, we have

$$\mathfrak{f}_n(\mathsf{z}) = (X_1 + Y_1)\mathsf{z} + \sum_{j=2}^{\infty} X_j \mathfrak{h}_j(\mathsf{z}) + \sum_{j=2}^{\infty} Y_j \mathfrak{g}_{n_j}(\mathsf{z}) = \sum_{j=1}^{\infty} \left(X_j \mathfrak{h}_j(\mathsf{z}) + Y_j \mathfrak{g}_{n_j}(\mathsf{z}) \right).$$

Theorem 2.4. Let $\mathfrak{f}_n \in \overline{\mathcal{SH}}^0(\zeta, \vartheta, \varrho, \xi, n, \delta)$. Then for $|\mathbf{z}| = r < 1$ and $\xi + \vartheta \geq 2(\zeta + \varrho), n \in \mathbb{N}_0, 0 \leq \delta < 1$. we have

$$|\mathfrak{f}_{n}(\mathsf{z})| \leq r + \frac{1-\delta}{\left[\frac{\zeta+\xi+\varrho+\vartheta}{\zeta+\varrho}\right]^{n} \left[\frac{\zeta+\xi+\varrho+\vartheta}{\zeta+\varrho} - \delta\right]} r^{2},$$

and

$$|\mathfrak{f}_n(\mathbf{z})| \geq r - \frac{1-\delta}{\left[\frac{\zeta+\xi+\varrho+\vartheta}{\zeta+\varrho}\right]^n \left[\frac{\zeta+\xi+\varrho+\vartheta}{\zeta+\varrho} - \delta\right]} r^2.$$

Proof. Here we only will prove the rightside of the inequality. The leftside of the inequality might be shown like this way. Let $\mathfrak{f}_n \in \overline{SH}^0(\zeta, \vartheta, \varrho, \xi, n, \delta)$. If we take absolute value of \mathfrak{f}_n , then we obtain

$$\begin{split} |\mathfrak{f}_{n}(\mathbf{z})| &\leq r + \sum_{j=2}^{\infty} \left(a_{j} + b_{j}\right) r^{2} \\ &\leq r + \frac{\left(1 - \delta\right) r^{2}}{\left[\frac{\zeta + \xi + \varrho + \vartheta}{\zeta + \varrho}\right]^{n} \left[\frac{\zeta + \xi + \varrho + \vartheta}{\zeta + \varrho} - \delta\right]} \sum_{j=2}^{\infty} \frac{L_{n} \left[\frac{\zeta + (\xi + \vartheta)(j - 1) + \varrho}{\zeta + \varrho} - \delta\right]}{1 - \delta} a_{j} \\ &+ \frac{\left(1 - \delta\right) r^{2}}{\left[\frac{\zeta + \xi + \varrho + \vartheta}{\zeta + \varrho}\right]^{n} \left[\frac{\zeta + \xi + \varrho + \vartheta}{\zeta + \varrho} - \delta\right]} \sum_{j=2}^{\infty} \frac{M_{n} \left[\frac{-\zeta + (\xi + \vartheta)(j + 1) - \varrho}{\zeta + \varrho} + \delta\right]}{1 - \delta} b_{j} \\ &\leq r + \frac{\left(1 - \delta\right)}{\left[\frac{\zeta + \xi + \varrho + \vartheta}{\zeta + \varrho}\right]^{n} \left[\frac{\zeta + \xi + \varrho + \vartheta}{\zeta + \varrho} - \delta\right]} r^{2}. \end{split}$$

We can obtain covering result in following corollary with the left-hand side inequality in Theorem 2.4. $\hfill \Box$

Malaysian Journal of Mathematical Sciences

Corollary 2.1. Let \mathfrak{f}_n of the form (7) be so that $\mathfrak{f}_n \in \overline{SH}^0(\zeta, \vartheta, \varrho, \xi, n, \delta)$, where $\xi + \vartheta \geq 2(\zeta + \varrho)$, $n \in \mathbb{N}_0$, $0 \leq \delta < 1$. Then

$$\left\{ \mathsf{w}: |\mathsf{w}| < 1 - \frac{(1-\delta)}{\left[\frac{\zeta + \xi + \varrho + \vartheta}{\zeta + \varrho}\right]^n \left[\frac{\zeta + \xi + \varrho + \vartheta}{\zeta + \varrho} - \delta\right]} \right\} \subset \mathfrak{f}_n(\mathbb{D}).$$

Theorem 2.5. Under convex combinations $\overline{SH}^0(\zeta, \vartheta, \varrho, \xi, n, \delta)$ is closed.

Proof. Let $\mathfrak{f}_{n_i} \in \overline{\mathcal{SH}}^0(\zeta, \vartheta, \varrho, \xi, n, \delta)$ for i = 1, 2, ..., where \mathfrak{f}_{n_i} is given by

$$\mathfrak{f}_{n_i}(\mathsf{z}) = \mathsf{z} - \sum_{j=2}^{\infty} a_{j_i} \mathsf{z}^j + (-1)^n \sum_{j=2}^{\infty} b_{j_i} \overline{\mathsf{z}}^j.$$

Then by (10),

$$\sum_{j=2}^{\infty} \frac{L_n \left[\frac{\zeta + (\xi + \vartheta)(j-1) + \varrho}{\zeta + \varrho} - \delta\right]}{1 - \delta} a_{j_i} + \sum_{j=2}^{\infty} \frac{M_n \left[\frac{-\zeta + (\xi + \vartheta)(j+1) - \varrho}{\zeta + \varrho} + \delta\right]}{1 - \delta} b_{j_i} \le 1.$$
(12)

For $\sum_{i=1}^{\infty} t_i = 1, 0 < t_i < 1$, the convex combination of \mathfrak{f}_{n_i} can be expressed as

$$\sum_{i=1}^{\infty} \mathfrak{t}_i \mathfrak{f}_{n_i}(z) = z - \sum_{j=2}^{\infty} \left(\sum_{i=1}^{\infty} \mathfrak{t}_i a_{j_i} \right) \mathsf{z}^j + (-1)^n \sum_{j=2}^{\infty} \left(\sum_{i=1}^{\infty} \mathfrak{t}_i b_{j_i} \right) \bar{\mathsf{z}}^j.$$

Then by (12),

$$\begin{split} &\sum_{j=2}^{\infty} \frac{L_n \left[\frac{\zeta + (\xi + \vartheta)(j-1) + \varrho}{\zeta + \varrho} - \delta \right]}{1 - \delta} \left(\sum_{i=1}^{\infty} \mathfrak{t}_i a_{j_i} \right) \\ &+ \sum_{j=2}^{\infty} \frac{M_n \left[\frac{-\zeta + (\xi + \vartheta)(j+1) - \varrho}{\zeta + \varrho} + \delta \right]}{1 - \delta} \left(\sum_{i=1}^{\infty} \mathfrak{t}_i b_{j_i} \right) \\ &= \sum_{i=1}^{\infty} \mathfrak{t}_i \sum_{j=2}^{\infty} \frac{L_n \left[\frac{\zeta + (\xi + \vartheta)(j-1) + \varrho}{\zeta + \varrho} - \delta \right]}{1 - \delta} a_{j_i} \\ &+ \sum_{i=1}^{\infty} \mathfrak{t}_i \sum_{j=2}^{\infty} \frac{M_n \left[\frac{-\zeta + (\xi + \vartheta)(j+1) - \varrho}{\zeta + \varrho} + \delta \right]}{1 - \delta} b_{j_i} \\ &\leq \sum_{i=1}^{\infty} \mathfrak{t}_i = 1. \end{split}$$

This is the condition required by (10) and so $\sum_{i=1}^{\infty} \mathfrak{t}_i \mathfrak{f}_{n_i}(\mathsf{z}) \in \overline{SH}^0(\zeta, \vartheta, \varrho, \xi, n, \delta).$

References

- Al-Oboudi, F. (2004). On univalent functions defined by a generalized salagean operator. International Journal of Mathematics and Mathematical Sciences, 27:1429–1436.
- Avci, Y. and Zlotkiewicz, E. (1990). On harmonic univalent mappings. Journal of Statistical Theory and Practice, 44:1–7.
- Bayram, H. and Yalcin, S. (2017). A subclass of harmonic univalent functions defined by a linear operator. *Palestine Journal of Mathematics*, 6(2):320–326.
- Catas, A. (2009). On a certain differential sandwich theorem associated with a new generalized derivative operator. *General Mathematics*, 17(4):83–95.
- Cho, N. and Kim, T. (2003). Multiplier transformations and strongly close-toconvex functions. Bulletin of the Korean Mathematical Society, 40(3):399– 410.
- Cho, N. and Srivastava, H. M. (2003). Argument estimates of certain analytic functions defined by a class of multiplier transformations. *Mathematical Computational Modelling*, 37:39–49.

Malaysian Journal of Mathematical Sciences

- Clunie, J. and Sheil-Small, T. (1984). Harmonic univalent function. Annales Academica Scientiarum Fennicae Mathematica, 9:3–25.
- Flett, T. M. (1972). The dual of an inequality of hardy and littlewood and some related inequalities. Journal of Mathematical Analysis and Applications, 38:746-765.
- Jahangiri, J. M. (1999). Harmonic functions starlike in the unit disk. Journal of Mathematical Analysis and Applications, 235:470-477.
- Jahangiri, J. M., Murugusundaramoorthy, G., and Vijaya, K. (2002). Salageantype harmonic univalent functions. South Pacific Journal of Pure and Applied Mathematics, 2:77–82.
- Kumar, S. and Ravichandran, V. (2017). Functions defined by coefficient inequalities. Malaysian Journal of Mathematical Sciences, 11:365–375.
- Olatunji, S. and Dutta, H. (2019). Sigmoid function in the space of univalent λ-pseudo-(p, q)-derivative operators related to shell-like curves connected with fibonacci numbers of sakaguchi type functions. Malaysian Journal of Mathematical Sciences, 13:95–106.
- Salagean, G. S. (1983). Salagean-type harmonic univalent functions. Lecture Notes in Mathematics Springer- Verlag Heidelberg, 1013:362–372.
- Silverman, H. (1998). Harmonic univalent functions with negative coefficients. Journal of Mathematical Analysis and Applications, 220:283–289.
- Silverman, H. and Silvia, E. M. (1999). Subclasses of harmonic univalent functions. New Zealand Journal of Mathematics, 28:275-284.
- Uralegaddi, B. and Somanatha, C. (1992). Certain classes of univalent functions, Current Topics in Analytical Function Theory. World Scientific Publishing Co. Pte. Ltd. pp.371-374, Edited by H. M. Srivastava and S. Owa, P O Box 128, Farrer Road, Singapore 9128.
- Yasar, E. and Yalcin, S. (2012). Generalized salagean-type harmonic univalent functions. Studia Universitatis Babes-Bolyai Mathematica, 57(3):395-403.
- Yasar, E. and Yalcin, S. (2013). Certain properties of a subclasses of harmonic functions. Applied Mathematics and Information Sciences, 7(5):1749–1753.